作為一位剛到崗的人民教師,我們要有很強的課堂教學能力,寫教學反思可以快速提升我們的教學能力,那么問題來了,教學反思應該怎么寫?
《乘法分配律》教學反思 1
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
一、抓住重點。讓學生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯系,寫出類似的幾組算式。發現規律,用語言或其他方式交流規律,給出用字母式子表示的運算律。這樣的安排,便于學生經歷觀察、分析、比較和根據的。過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發現規律,用語言或其他方式與同伴交流規律。
在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯系與區別之后,學生就根本不知道從何下手。在他們的印象中,聯系就是根據乘法的意義來進行聯系。根本沒有從數字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區別之后,學生也還是無法用語言來表達這一規律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經發現我們班上的學生根本無法發現其中的規律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現了問題。這些都要一一地去分析。
總之,這個關鍵今天并沒有完成好。
二、考慮學生的學習情況,尊重他們的主觀感受。
三、練習中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74.一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發現,學生會用字母表示出這一規律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發現它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
乘法分配律課后教學反思 2
乘法分配律是四年級學習的重點,也是難點之一。它是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的,是一節比較抽象的概念課,教學是我根據教學內容的特?
一、在對本節課的教學目標上,我定位在:
(1)通過學生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
(2)初步感受乘法分配律能使一些計算簡便。
(3)培養學生分析、推理、概括的思維能力。
二、結合自己所教案例,對本節課教學策略進行以下幾點簡要分析:
1、總體上我的教學思路是由具體——抽象——具體。
在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在尋找規律的過程中,有同學是橫向觀察,也有同學是縱向觀察,老師都予以肯定和表揚,目的是讓學生從自己的數學現實出發,去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
2、從學生已有知識出發。
教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創造條件,沒有學生主體的主動參與,不會有學生主體的主動發展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個植樹的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。
3、鼓勵學生大膽猜想。
猜想是科學發現的前奏。學生的學習活動中同樣不能沒有猜想,否則,主體性探究 活動便缺少了內在的動力,自主學習的過程也成了失去目標的無意義操作。學生看到加法交換律和加法結合律,從直觀上產生了關于乘法運算定律的猜想。于是,接下來的舉例就成了驗證猜想的必需,無論猜想的結論是“是”還是“非”,學生的思維一直是活躍著的,對學生都是有意義的。這個過程是教會學生 學習與掌握探索方法的過程,是培養學生學習品格的過程。
4、師生平等交流。
教學過程是師生共創共生的過程,新課程確定的培養目標和所倡導的學習方式要求 教師必須轉換角色。改變已有的教學行為,教師必須從“師道尊嚴”的架子中走出來,與學生平等地參與教學,成為共同建構學習的參與者。在以上教學片斷中,教 師讓學生充分經歷學習過程,調動學生學習的熱情:猜想——傾聽——舉例——驗證,在 欣賞學生的“閃光”處給學生“點撥”。教師沒有過多的講授,也沒有花大量的時間去 刻意的創設教學情境,只是做喚醒學生主體意識的工作,引導學生大膽猜想,大膽表達。學生借助已有的知識經驗,自主解決新問題,使學生的主體地位得以體現。
5、將學生放在主體位置。
把學生放在主動探索知識規律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題。在探究這一系列的等式有什么共同點的活動中,學生涌現出的各種說法,說明學生的智力潛能是巨大的。所以我在這里花了較多的時間,讓學生多說,談談各自不同的看法,說說自己的新發現,教師盡可能少說,為的就是要還給學生自由探索的時間和空間,從而能使學生的主動性、自主性和創造性得到充分的發揮。
三、教學中的不足和改進之處:
在教學過程中,也有不盡人意的地方,如雖然本節課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等,今后的工作中,要多向以下幾個方面努力:
1、多聽課,多學習。尤其是優秀教師的課,學習他們的新思想、新方法,改善課堂教學,提高課堂教學藝術和課堂效率。
2、加強同科組教師之間的溝通和交流,相互學習,取長補短,共同進步。
3、認真鉆研教材,把握好教材的重點、難點、關鍵點、易混點,上課時才能做到心中有數,游刃有余。
《乘法分配律》教學反思 3
1、在思考如何設計《乘法分配律練習課》之前,我收集了一些本校四年級學生的錯題,進行分析,了解學生的學習現狀,針對學生普遍存在的問題進行教學設計。
2、經過調查發現學生出現錯誤的根本原因在于不理解算式的意義,僅僅停留在題目表面,先找相同因數,再套用公式,不能按照算理正確地思考簡算過程。所以我認為,這節練習課應該從最樸素的算理——乘法的意義出發,抓住問題本質,才能對癥下藥。教學中我通過兩個判斷練習,引導學生從乘法意義的角度理解乘法分配律,從學生的反饋來看,這樣的設計教學效果比較合理科學的,學生在進行簡算時已經有了檢查的意識。而不再是盲目地套用格式。
3、通過將乘法分配律常見題型進行歸類,不同題型采用了不同的小妙招來解決,題目形式變化,解決方法也不同,但只要符合“幾個幾加上幾個幾”的意義,緊扣每一步都相等,就能夠借助乘法分配律進行簡算。學生對這4個簡算小妙招比較感興趣,從練習反饋來看學習效果比較好。
本節課的教學設計合理、教學重難點突出,教學目標明確、教學效果比較好。當然也有一些不足之處:在計算大長方形的`面積時,課件上呈現的數字要把單位帶上,如果時間允許,最好給學生5分鐘左右的集中練習的時間。
《乘法分配律》教學反思 4
乘法分配律是一節概念課,是在學生已經掌握了加法運算定律以及乘法交換律和結合律的基礎上進行教學的。在五大運算定律中,是最難理解的,學生最不容易掌握的。本節課的重點是理解乘法分配律的意義,難點是利用乘法分配律進行簡便計算 。
成功之處:
1.本課在教學情境的設計上沒有采用課本上的主題圖,而是選取學生熟悉的買校服情境:這學期學校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費多少元?學生獨立思考,同位交流,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。
2.加深對乘法分配律意義的理解,讓學生不僅知道兩個數的和與一個數相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數的和的形式。通過多種形式的練習讓學生深入理解乘法分配律的意義。
不足之處:
1.在總結乘法分配律時沒有把結構說的很透徹,導致學生出現在練習時有一個同學在同步學習的練習題中把連乘算成乘法分配律。
2.學生的語言敘述不熟練,導致學生雖然會背用字母表示的式子,但是不會應用。
《乘法分配律》教學反思 5
我對教材內容、學情進行了認真的分析之后,確定了教學目標:通過小組合作探索乘法分配律的活動,進一步體驗探索規律的過程,并能用字母表示;經歷共同探索的過程,培養解決實際問題和數學交流的能力;會用乘法分配律進行一些簡便計算。通過學生自主研究、小組討論、全班交流以及講學練相結合,設計相應的練習題,逐步理解抽象的乘法分配律。
通過教研組全體老師的努力,我們設計了比較合理的前置性小研究。
在本節課的教學過程中,學生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點,能夠觀察出兩道算式的結果是相同的;能夠按照算式的特點進行舉例;能夠自己說出規律,總結規律;能夠用求結果和乘法的意義去驗證這條規律的正確性、普遍性;能夠運用乘法分配律解決實際的問題,在做題的同時感受乘法分配律給計算帶來的方便。
當然,本節課的教育教學過程,也是有不足的地方。我認為:
1、教師在施教的過程中,經常性的打斷學生的發言。其實這是很不好的習慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了。”我自己也意識到了這個問題。我覺得在“生本課堂”中教師,應該有這樣一種意識,那就是“等”的意識。等學生表達完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經過有智慧的引導,幫助他們度過“難過”。可是我們很多時候,經常犯的錯誤是,學生只要一有點小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學的匯報,也打斷了王孟陽同學的匯報,還有好幾次打斷了同學們的交流活動。
對于這種打斷可能在心里帶著很僥幸的心理,認為我必須在規定的時間完成某些教學任務,不能讓本節課“節外生枝”。可是,這種心理違背了“生本課堂”的基本教學理念。
2、教師在引導的過程中,不能照顧到學生的想法。像:徐昊同學和李厚杰同學在課堂上,表達了自己的想法。可是我在施教的過程中,沒有給予足夠的重視。可能對于本節課的教學,他們的想法,是在浪費時間。可是,我的這種做法,卻不能照顧到他們的后續發展。我覺得在處理這個事件的時候,我應該既不能讓本節課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。
3、我覺得學生們的交流是不夠熱烈的。根本的原因是:學生們的研究不夠到位,不會提出自己的疑問,不能對自己的疑問進行探索研究。我覺得這都是老師在平時教學中,沒有給予足夠的指導的原因。
還有很多的問題,也許是我沒有意識到的。
結合本節課,關于生本課堂我有了很多的想法。
我認為真正的“生本課堂”是這樣的:
教師在教學設計、教學過程等各個環節,能體現學生的主體地位,從細節去體現。也是一種和諧的教育氛圍。教師和學生可以圍繞一個問題據理力爭,也可以在一節課中,實現多個知識點的“串聯”,也可能好幾節課我們突破不了一個知識點的講解。教師千萬要改變原先“計件工作”的模式,我們還原教育本來的色彩。它應該是自然的,富有詩情畫意的。我們身在其中,師生應該一起去營造一種氛圍,體會教育給我們帶來的幸和充實感。
我立志讓我的課堂,成為我們幸福的源泉。
《乘法分配律》教學反思 6
《乘法分配律》一直是四則運算定律的一個難點,學生最容易出錯。比如38與99相乘,就容易出現“只把38與100相乘后再減1”的錯誤。還有的學生在計算125×48時,會出現“125×(6×8)=125×6+125×8“這樣的錯誤。究其原因,還是未能真正理解乘法的含義和乘法的運算定律。
在教學中,我也想了很多辦法來解決這些問題,比如讓學生背乘法分配律的含義,經常讓學生做點這樣的易錯題。可發現效果不是很明顯,尤其是有幾個孩子,一會就忘記了。后來,我想:還是必須從理解乘法的意義中去學會乘法分配律。于是,我就在輔導這幾名學生時,要求他們說出每一個算式表示的含義,再說一說自己做錯的算式的含義,從而在對比中來發現、理解自己的`錯誤,明白了自己錯誤的原因后,再來思考正確的解題思路,經過幾次這樣的訓練,效果好多了。
乘法分配律教學反思 7
乘法分配律的教學是在學生學習了加法交換律、加法結合律及法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關注學生已有的知識經驗。
以學生身邊熟悉的情境為教學的切入點,激發學生主動學習的需要,為學生創設了與生活環境、知識背景密切相關的感興趣的學習情境――為參加“陽光伙伴”的32名運動員購買統一服裝。通過兩種算式的比較,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。
2、展示知識的發生過程,引導學生積極主動探究。
先讓學生根據提供的問題,用不同的方法解決,從而發現(35+25)×32=35×32+25×32這個等式,讓學生觀察,初步感知“乘法分配律”。再根據“老師還有其他選擇嗎”?這一問題,再次引出(35+25)×32=35×32+25×32,最后,要求學生照樣子寫出幾組這樣的等式,引導學生再觀察,讓學生說明自己發現的規律。這樣學生經歷了“觀察、初步發現、舉例驗證、再觀察、發現規律、概括歸納”這樣一個知識形成過程。不僅讓學生獲得了數學基礎知識和基本技能,而且培養學生主動探究、發現知識的能力。
3、教完之后,感覺在練習的設計上,還太拘禮與課本,雖然引導學生發現了定律,但沒有相配套的練習使學生對所學知識加以鞏固、應用。對學生掌握知識的情況不能及時反饋,對如何用活、用好教材還需進行進一步的思考。
《乘法分配律》教學反思 8
乘法分配律是所有運算律中形式變化較為復雜,且跨越加法和乘法兩級運算的定律,對學生的記憶、理解與運用都提出了較高的要求。教學中,教師需要在探析錯因、讀法糾正、變式訓練上做足功夫,巧制策略。學生在正式接觸乘法分配律之前,學生陸續掌握了加法和乘法的交換律和結合律,并能熟練使用這些定律進行簡單的。運算。照常理推測,同為等式恒等變換,借助已有的經驗,學生對于乘法分配律應該很容易接受。然而,實際情況卻不容樂觀,學生在運用乘法分配律進行簡算時出錯率較高。為此,教師應巧制策略,幫助學生克服困難。
如何幫學生建立數學模型,展現乘法分配律的性質,是教學的根本,也是學生理解的前提。要讓學生對乘法分配律有深刻準確的記憶和理解,用最符合學生心理特征的方式進行闡述才是上策。
為此,我改進了教學方式——切換讀法,化難為易。
[例題]植樹節那天,學校組織二(1)班的學生植樹,上午植樹4小時,下午植樹2小時,平均每小時植樹25棵,問:植樹節那天,學生一共植樹多少棵?
步驟1:學生列式多為“25×4+25×2”和“25×(4+2)”兩種式子。
步驟2:簡述各算式的算理:25×4+25×2表示先分別求出半天的植樹數,再求一天的植樹總數;25×(4+2)表示先求植樹總時長,再求植樹總數。
步驟3:引導學生從數字計算的角度去理解:25×4+25×2表示兩個積的和,25×(4+2)表示兩個數的積。接著用一句話揭示它們的共同點:4個25加上2個25等于6個25,6就是4與2的和。以實例為對象,換成通俗的說法,完美呈現了算式的內涵,深化了學生的理解。
步驟4:針對代數式表示的乘法分配律“a×c+b×c=(a+b)×c”,讓學生嘗試用通俗方式解讀,即a個c加上b個c等于(a+b)個c。
實踐證明,滲入思維的讀法比機械復讀教學效果要好。
乘法分配律課后教學反思 9
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內容的處理方法與前面講乘法結合律的方法類似。在設計本教案的過程中,我一直抱著“以學生發展為本”的宗旨,試圖尋找一種在完成共同的學習任務、參與共同的學習活動過程中實現不同的人的數學水平得到不同發展的教學方式。結合自己所教案例,對本節課教學策略進行以下幾點簡要分析:
一、教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創造條件,沒有學生主體的主動參與,不會有學生主體的主動發展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。
二、讓學生根據自己的愛好,選擇自己喜歡的書,出來的算式就比較開放。學生能自由發揮,對所學內容很感興趣,氣氛熱烈。由學生計算總價列式,到通過計算發現兩個形式不一樣的算式,結果卻是一樣的。這都是在學生已有的知識經驗的基礎上得到的結論,是來自于學生已有的數學知識水平的。
《乘法分配律》教學反思 10
乘法分配律是第三章的教學難點也是重點。這節課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節課我力圖將教學生學會知識,變為指導學生會學知識。通過讓學生經歷了 “ 觀察、初步發現、舉例驗證、再觀察、發現規律、概括歸納 ” 這樣一個知識形成的過程。回顧整個教學過程,這節課的亮點主要體現在以下幾個方面:
一、引入生活問題,激趣探究
在教學中,我為學生做好新知鋪墊,然后創設大量生動、具體、鮮活的生活情境,讓學生感到數學就是從身邊的生活中來的,激發學生學習的熱情。首先我創設情景,提出問題: “ 一共有多少名學生參加這次植樹活動? ” 。讓學生根據提供的條件,用不同的方法解決,從而發現( 4 + 2 ) ×25=4×25 + 2×25 這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知 “ 乘法分配律 ” 。再讓學生 “ 觀察這個等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時利用情景,讓學生充分的感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學生獨立探究的機會
我要求學生觀察得到的兩個等式,提出 “ 你有什么發現? ” 。此時學生對 “ 乘法分配律 ” 已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較 “ 模糊 ” 的認識。
三、為學生的學習方式的轉變創設了條件
為了讓 “ 改變學生的學習方式,讓學生進行探索性的學習 ” 不是一句空話。在這節課上,我抓住學生的已有感知,立刻提出 “ 觀察這一組等式,你能發現其中的奧秘嗎? ” 。這樣,給學生提供了豐富的感知材料和具有挑戰性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發現問題、分析問題和解決問題的能力。
乘法分配律教學反思 11
記得曾經在教孩子們乘法分配律的時候,總是遇到很多問題,對于乘法分配律的應用不是很好,吐槽了很久,現在在教二年級的孩子的時候,我發現其實在二年級已經接觸了這方面的知識,只是沒有進行歸納而已。
二年級的課本上有這樣一種題型,如:(1)6x9=5x9+9=7x9—9=(2)9x4=9x3+9=
9x5—9=(3)8x9=7x9+9=9x9—9=先計算,你發現了什么?
我一看到這題,我就想到乘法分配律,但是在二年級剛接觸乘法,不可能就跟他們講乘法分配律。我在上練習課的時候我特意把這題拿出來講了,我想如果這里學生題解好了,對以后學習乘法分配律是有幫助的。在課堂上,我先讓學生自己完成,第一題的第2,3個算式,他們是按照運算順序來計算的,先算乘法,再算加法或減法,這個沒有難度,而且他們根據第一題,后面的兩題都不要做,直接寫出了結果,每一題中的3個算式的結果是一樣的。我就問他們,為什么會出現這樣情況?學生就答不上來。我就舉了個示范,6x9是6個9相加,5x9+9是5個9相加再加1個9,5個9加1個9是6個9,6個9相加就是6x9,所以5x9+9=6x9=54。學習了乘法的意義,對于這個他們能理解,只是想不到而已,那么7x9—9=,可以交給孩子們完成,第(2)(3)題我也是讓學生來說一說。另外我還補充了一題,6x7—14,我發現竟然有孩子會想到14就是2個7,6個7減去2個7就是4個7,就是4x7=28。特別棒!
乘法分配律教學反思 12
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內容的處理方法與前面講乘法結合律的方法類似。通過觀察幾組數目不同的算式,引導學生發現規律,然后歸納、總結,用語言表述出來。在教學時,我也是按照教學參考書的建議安排教學過程的。先復習乘法的交換律和結合律,接著導入新課。通過(18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3,讓學生觀察、分析、思考、歸納,最后在教師的引導下總結出乘法分配律并加以運用。
教學過程中,導課比較快,在歸納乘法分配律的內容時,主觀上是時間緊張,可課后想想,實際上是引導不到位。課堂上學生氣氛不活躍,思維不積極,難以完整地總結出乘法分配律。結果,學生對乘法分配律不太理解,運用時問題較多。如當天在作業時出現的問題就比較多:45×103有三分之一的學生直接乘,不會簡便;尤其是計算59×21+21時,學生發現不了它的特點,不會運用乘法分配律,可以說,本節課上得不是很成功。
今后的工作中,要多向以下幾個方面努力:
1.多聽課,多學習。尤其是青年教師的課,學習他們的新思想、新方法,改善課堂教學,提高課堂教學藝術和課堂效率。
2.加強同同課教師之間的溝通和交流,相互學習,取長補短,共同進步。
3.認真鉆研教材,把握好教材的重點、難點、關鍵點、易混點,上課時才能做到心中有數,游刃有余。
《乘法分配律》教學反思 13
乘法分配律是教學的難點也是重點。這節課采用從生活中的問題入手,利用學生感興趣的具體情境展開。這節課我力圖將教學生學會知識,變為指導學生會學知識,將重視結論的記憶變為重視學生獲取結論的體驗和感悟,將模仿式的學習變為探究式的學習。學生經歷了“觀察、初步發現、舉例驗證、再觀察、發現規律、概括歸納”這樣一個知識形成過程。這樣不僅讓學生獲得了數學基礎知識和基本技能,而且更能培養學生主動探究、發現知識的能力。回顧整個教學過程,這節課的亮點體現在以下幾個方面:
一、從身邊引入熟悉的生活問題,激趣探究
我們在教學中要為學生創設大量生動、具體、鮮活的生活情境,讓學生感到數學就是從身邊的生活中來的,激發學生學習的熱情。在教學時,我先創設情景,提出問題:“一共有多少名學生參加這次植樹活動?”。讓學生根據提供的條件,用不同的方法解決,從而發現(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、為學生提供了自己獨立探究的機會
數學教學應該是數學教學的活動。傳統的教學活動往往只重視結論的記憶,而這節課我把學生的活動定位在感悟和體驗上,引導學生用數學思維方式去發現,去探索。尤其是在學生初步感悟到兩種算法相等關系的基礎上,繼續為學生創造一個思考的情景。我要求學生觀察得到的兩個等式,提出“你有什么發現?”。此時學生對“乘法分配律”已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認識。
三、為學生的學習方式的轉變創設了條件
模仿學習,學生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應用。改變學生的學習方式,讓學生進行探索性的學習,不能是一句空話。在這節課上,我抓住學生的已有感知,立刻提出“觀察這一組等式,你能發現其中的奧秘嗎?”。這樣,給學生提供了豐富的感知材料和具有挑戰性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發現問題、分析問題和解決問題的能力。
乘法分配律教學反思 14
這節課是在學生學習乘法分配律基礎上進行教學的。在第一課時學生對于乘法分配律的意義已經有了初步的理解,對于乘法分配律的結構也有了一定的認識,能初步利用乘法分配律進行簡便計算。本課內容的教學重點是靈活根據題型應用乘法分配律進行簡便計算。
成功之處:
1、課始通過復習乘法分配律的意義,以及應用乘法分配律進行填空的練習,讓學生進一步熟悉乘法分配律的結構及特點,加深對乘法分配律意義的理解。
2、分類型進行練習。采用邊講邊練相結合的方法,讓學生通過專項練習進一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數乘一個數。整體教學就是穩扎穩打,一步一個腳印,讓所有學生都能掌握其中的變式練習,然后再進行綜合訓練,讓學生靈活解決問題。
不足之處:
1、由于分類型講解練習,導致時間分配不足,個別題型沒有足夠的時間進行練習。
2、學生的注意力集中不夠,導致個別學生對某一類型的題目沒有掌握。
再教設計:
1、加強小組合作的學習,能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發揮小組組際間的交流,留給學生更多的時間和空間,發揮學生主體作用。
2、抓住易出錯類型題,重點講解,重點訓練。
《乘法分配律》教學反思 15
乘法分配律是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律。如何教學能使學生較好的理解乘法分配律的內涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。
一、創設師生競賽,激發學習欲望。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老師和同學們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結果教師又快又對,學生都很奇怪,教師順勢導入:同學們都特別想知道在比賽過程中,學生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導入讓學生充滿了求知的欲望,激發了學習的熱情。
二、設計思考問題,學生自主探究。
出示例題后,學生獨立解答,然后教師出示思考問題,學生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的`結果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯系呢?請同學們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發現左邊括號外的那個數,寫到右邊都要乘兩次。
生B:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
整個教學過程通過學生觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
三、練習有坡度,前后有呼應。
在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習的形式多樣,課本上的填空題解決以后,設計了判斷題和練習題,把學生易出錯的問題提前預設好,而且通過練習讓學生明白乘法分配律也可以兩個數的差,也可以是三個數的和,使學生對乘法分配律的內容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學生運用今天所學知識進行計算,學生非常有興趣,在練習中培養了學生分析、推理、概括的思維能力。
總之,在本堂課中新的教學理念有所體現,是一節本色的數學課堂。但在具體的操作中還缺乏成熟的思考,自主探究環節對問題的設計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設計順序有些出入,感覺效果沒有預想的好,上課時對于教案的熟悉程度還有待加強。
四年級乘法分配律教學反思 16
教材提供了這樣一個主體圖:春季里,同學們開展植樹活動,一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學生會用兩種不同的方法分別列出算式,接著通過計算發現,兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當我在一個班按照此教學設計教學后,我發現效果并不理想,表現有兩點:
①有些學生只是機械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
②由于沒有真正理解乘法分配律的內涵,所以完全不能理解其逆應用以及當兩個數的差乘一個數時應用乘法分配律。如:他們認為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設計了教案。增加了一個問題:負責挖坑、種樹的同學比負責抬水、澆水的同學多多少人?這樣學生又列出另外兩個算式,通過計算后用等號連接:25(4-2)=254-252,接下來,我引導學生觀察、對比兩組算式,充分地去發現相同點與不同點。這樣一來,促使了學生去尋找事物之間的聯系,抓住本質,尋找共同點,促進交流,順利地實現了自我構建和知識創造。學生的發現自然也就更豐富、更有深度了:無論是兩個數的和還是兩個數的差去乘一位數,都可以先把他們與這個數分別相乘,再相加或者再相減。此外,我還引導學生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學生突破乘法分配律逆應用這個教學難點。
我通過對兩個班不同的教學設計,感受到:認真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內涵更有廣度和深度,也為培養和發展學生思維的靈活性,提供了更廣闊的空間。
乘法分配律教學反思 17
《乘法分配律》是一節比較抽象的概念課,是學生們學習了加法交換律和結合律,以及乘法的交換律和結合律的基礎上進行教學的。本節課的教學重點是乘法分配律的特點和應用。開始導入我是利用小學教學熱身賽展開的教學。9×37+9×63和9×(37+63)。左右兩排學生做不同的題,讓學生認識到這兩道題難易程度的不同,用的時間也是不同的,體現了用括號的必要性和簡便性,通過學生總結說特點引導他們猜想,然后對猜想進行驗證,得出結論,并應用到實際中,培養學生們學以致用的好習慣。
上周去濱州聽課,學到了“猜測—舉例驗證—總結—應用”的教學模式,充分體現了新課標的探究性學習,并在本課教學中得到了很好的利用,不完全歸納法,也在本課中用所應用。但是在引入時應該讓學生們把這兩個算式的特點和聯系理解透徹了,學生們會很快的猜想出這條規律,整節課講速度有些慢,導致了幾個經典的練習題沒有處理,創設情境激發學生的求知欲來導入新課,會收到更好的效果。
(80+4)×25=80×25+4×25此題的處理,我感到比較欣慰。當發現學生們(80+4)×25=80×25+4時,我靈機一動在黑板上寫下了這個錯誤的算式,讓和我做的一樣的同學舉手,大約有5、6個同學高興地舉起手,還有一個同學得意地說“剛才我還以為做錯了呢?”看到這種情景我接著說:“不舉手的同學你們想說點什么嗎?”此句話給了這些沒有舉手的同學的信心,他們迫不及待地說出了正確的解法。這道題學生們非常容易做錯,這樣的處理會使學生加深印象,提高做題的準確率。
《乘法分配律》教學反思 18
《乘法分配律》教學反思
乘法分配律是一節概念課,是在學生已經掌握了加法運算定律以及乘法交換律、乘法結合律的基礎上進行教學的。在本單元運算定律中,是最難理解的,學生最不容易掌握的。本節課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進行簡便計算。
在課堂上,創設了植樹活動的情境,求一共有多少名同學參加了植樹活動。在課堂中,鼓勵學生獨立思考,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學生理解了乘法分配律后,運用變式練習加深對乘法分配律意義的理解,讓學生不僅知道兩個數的和與一個數相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習讓學生深入理解乘法分配律的意義。
通過學習,一些學生已掌握,但也有一些學生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應用。還有一些學生容易把乘法分配律和乘法結合律弄混淆。
所以在復習鞏固時,要加強乘法結合律與乘法分配律的對比,讓學生對這兩個運算定律的結構更清晰。還要加強對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應用運算定律進行簡便計算。
《乘法分配律》教學反思 19
①1355+5587=55(13+87)=5513+5587
②8(125+9)=8125+9
③(100-7)25=10025+725
④9947=(100-1)47=10047-1
⑤35201=35(201-1)
⑥79125=125(80-1)=12580+1251
⑦79125=125(80-1)=12580-1
⑧1252532=1258+425
⑨88125=808125
⑩24335=(245)33=10033
學生對于乘法分配律和結合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學中應該注意什么呢?
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學時我們往往注重等式兩邊的外形特點,即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)3=23+73是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)3=23+73
2、注意區分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數連乘,而乘法分配律的特征是兩個數的和乘一個數或兩個積的和。在練習題中(40+4)25與(404)25這種題學生特別容易出錯。為了更好地掌握,可多進行一些對比練習,如進行題組對比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區別?符合什么運算定律?應用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學生進行一題多解的練習,加深對乘法結合律和乘法分配律的理解
如:12588;10189你能有幾種方法?12588①豎式計算②125811③125(80+8)④(100+25)88等等。10189①豎式計算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等。對于不同解法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?力爭達到用簡便計算法進行計算成為學生一種自主行為,并能根據題目的特色靈活選擇適當的算法的目的。
4、多練
針對題目多次練習。練習時注意練習量和時間的安排。剛開始可以天天練習,過段時間以后可以一兩天練習一次,再到一周練習一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。
對于比較特殊的題目可以間斷性練習,對優生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。
只有在理解的基礎上反復練習,才能使孩子對于乘法分配律牢固掌握,我將在反思過程中制定出切實可行的計劃,盡快使孩子消化吸收。
《乘法分配律》教學反思 20
《乘法分配律的運用》教學設計及反思
教學目標
(一)使學生學會用乘法分配律進行簡算,提高計算能力.
(二)培養學生靈活運用乘法運算定律進行計算的習慣.
教學重點和難點
能比較熟練地應用運算定律進行簡算是教學的重點;反向應用乘法分配律是學習的難點. 教學過程設計
(一)復習準備
1.口算:
(二)學習新課
我們已經學過乘法分配律,今天繼續研究怎樣應用乘法分配律使計算簡便.(板書:乘法分配律的應用)
1.創設情境,激發學生學習積極性.
出示102×( ).
請同學任意填上一個兩位數,老師可以迅速說出它的得數,而不用筆算.
2.教學例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數乘三位數的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應用運算定律進行簡算?
經過討論后,可能出現兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎上引導學生觀察這類題目的特點,以及怎樣應用乘法分配律,從而使學生明確:“兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據是什么.
(3)計算9×37+9×63.
啟發提問:
①這類題目的結構形式是怎樣的?有什么特點?
②根據乘法分配律,可以把原式改寫成什么形式?這? 新理念還體現不夠,學生的積極性沒有充分調動起來。
《乘法分配律》教學反思 21
曾經真的以為自己是一個很負責任的人:我愛我的學生,我愛我的數學教學,甚至可以為了我的學生與數學教學,放棄我個人的休息時間,為的只是我愛的學生能愛上我教的數學,能把數學學得很出色。然而為什么總是事與愿違,成效“背叛”了設想,作業“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學期最大的感受,到底問題出在哪里呢?當我回想起教學中一點一滴的瑣事,老師們交流時的經驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經“背叛”了數學教學。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學生,積極舉手發言,而且一步一步被我“引進”來,突出所謂的教學重點,攻克預設的教學難點,最后解決相應的問題,“看上去很美”,真的,經過我的“引導”,他能“自主探索”,尋求規律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業就這么慘不忍睹?題目稍一拐彎,就轉不過來了,曾經我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經過反思與請教,我終于發現我錯了。
《乘法分配律》教學反思 22
乘法分配律是小學階段學生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節教學過程的設計上我采用了讓孩子通過“聯系實際、感知建模;分類整理,生成模型;發現規律,舉例驗證;表示規律,建構模型;概括規律,完善模型;應用規律,感受模型”的探索過程,完成本節的教學任務。
在教學過程中,以突破乘法分配律的教學重點和難點為切入點,對本節課知識的學習起到了舉足輕重的作用。根據自己的教學教訓,在平常的教學中,總是發現學生在學習完乘法分配律之后容易出現(a+b)×c=a×c+b的現象仔細研究其原因,其實是學生學的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內在的數學意義。因此,我就打破通過觀察 發現 猜想 驗證 概括的傳統教學思路,除了在外在形式上認識規律(教材意圖),又從乘法的意義入手,使學生進一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結論。讓學生對乘法分配律的理解不再只是停留在外在的“形”,而是又進入“質”的深化。這種教學建立在學生認知規律的基礎之上,實現了有效的建立模型突破了本節的第一個難點。從課后作業可以看出,這種教學效果明顯好于以前。
在突破本節第二個難點:乘法分配律容易跟乘法結合律混淆的現象時。敢于挑戰自我,不再泛泛地講兩個規律的區別與聯系,而采用反式教學寫出25×(4×8)=25×4+25×8的現象,讓學生既懂得乘法結合律和分配律的區別,又找到了乘法分配律概念的重點。
在本節課的練習設計上,力求有針對性、有坡度的知識延伸,出示擴展型的練習,對分配律的概念加以升華。
這些方面,只是我對自己原來的教學在反思與對比中覺得是對我而言較為進步的一點點。但是,在實際的課堂操作中,整個教學過程也出現了許多不盡人意的地方。
比如:課堂上由于緊強導致只顧自己思路,而忘了對學生的回答或知識的恰當與否做出及時評定。還有,恐怕在規定時間內完不成任務,而把“總結”與“拓展”放錯了位置;學生參與的積極性沒有預想中那么高,可能與我相對缺乏激勵性語言有關等等問題。
深入思考,覺得還是自己的業務不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:
一、深入鉆研,在挖掘教材上下功夫。
二、多聽課,學習別人長處,多查閱資料學習,提高自己的業務水平。
最重要的是更新教學理念,在教學思路的“創新”上狠下功夫,讓學生看到的天天都是“新”老師,甚至忘記“傳統”形象,這是我最高的追求目標。
《乘法分配律》教學反思 23
乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸得來的記得更牢。
因此我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數,由(4+2)個25,變為(8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數的和乘以一個數可以寫成兩個積相加的形式,再捉住因數的特點進行分析。在此基礎上,我并沒有急于讓學生說出規律,而是繼續為學生提供具有挑戰性的研究機會
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規律定律”,就是讓學生親歷規律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數學思想和方法。
相對于乘法運算中的其他規律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發,開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設計、解決,調動學生的積極性。讓學生根據自己的想法,選擇自己喜歡的方案,開放給學生,發揮學生的主體性,通過去發現、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在尋找規律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數學現實出發,去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
乘法分配律教學反思 24
乘法分配律是一節概念課,是在學生已經掌握了加法運算定律以及乘法交換律、乘法結合律的基礎上進行教學的。在本單元運算定律中,是最難理解的,學生最不容易掌握的。本節課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進行簡便計算。
在課堂上,創設了植樹活動的情境,求一共有多少名同學參加了植樹活動。在課堂中,鼓勵學生獨立思考,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學生理解了乘法分配律后,運用變式練習加深對乘法分配律意義的理解,讓學生不僅知道兩個數的。和與一個數相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習讓學生深入理解乘法分配律的意義。
通過學習,一些學生已掌握,但也有一些學生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應用。還有一些學生容易把乘法分配律和乘法結合律弄混淆。
所以在復習鞏固時,要加強乘法結合律與乘法分配律的對比,讓學生對這兩個運算定律的結構更清晰。還要加強對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應用運算定律進行簡便計算。
《乘法分配律》教學反思 25
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內容的處理方法與前面講乘法結合律的方法類似。在設計本教案的過程中,我一直抱著“以學生發展為本”的宗旨,試圖尋找一種在完成共同的學習任務、參與共同的學習活動過程中實現不同的人的數學水平得到不同發展的教學方式。結合自己所教案例,對本節課教學策略進行以下幾點簡要分析:
一、教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創造條件,沒有學生主體的主動參與,不會有學生主體的主動發展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。
二、讓學生根據自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。學生能自由發揮,對所學內容很感興趣,氣氛熱烈。到通過計算發現兩個形式不一樣的算式,結果卻是一樣的。這都是在學生已有的知識經驗的基礎上得到的結論,是來自于學生已有的數學知識水平的。
三、總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在尋找規律的過程中,有同學是橫向觀察,也有同學是縱向觀察,老師都予以肯定和表揚,目的是讓學生從自己的數學現實出發,去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
四、在學習中大膽放手,把學生放在主動探索知識規律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去發現規律,驗證規律,表示規律,歸納規律,應用規律。
在教學過程中,也有不盡人意的地方,如雖然本節課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學反思 26
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
一、抓住重點。讓學生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯系,寫出類似的幾組算式。發現規律,用語言或其他方式交流規律,給出用字母式子表示的運算律。這樣的安排,便于學生經歷觀察、分析、比較和根據的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發現規律,用語言或其他方式與同伴交流規律。
在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯系與區別之后,學生就根本不知道從何下手。在他們的印象中,聯系就是根據乘法的意義來進行聯系。根本沒有從數字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區別之后,學生也還是無法用語言來表達這一規律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經發現我們班上的學生根本無法發現其中的規律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現了問題。這些都要一一地去分析。
總之,這個關鍵今天并沒有完成好。
二、考慮學生的學習情況,尊重他們的主觀感受。
在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結果學生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發,那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
三、練習中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發現,學生會用字母表示出這一規律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。
想想做做第2題的第3小題74x(21+1)和74x21+74部分學生沒有發現它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74x21+74x1再運用乘法分配律變形成74x(21+1),學生理解后我補充77x99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48x3+48x2來計算,卻不能靈活運用所學知識列成(3+2)x48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
乘法分配律教學反思 27
關于乘法分配律早在上學期和本冊教材的前幾個單元的練習題中就有所滲透,雖然在當時沒有揭示,但學生已經從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學就建立在這樣的基礎之上,上午第一節課我在自己班上,后來第二節課去聽了一根木頭老師的課,現在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學習的是,學生的預習工作很到位。課前,學生就已經解決了“想想做做”第3、4題,學生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現了乘法分配律可以使計算簡便,體現了應用價值。我在課前沒有安排這樣的預習,因此課上的時間比較倉促。
其次,我在學生解決完例題的問題后,還讓學生提了減法的問題,這樣做的目的是讓學生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學生的知識面,同時又為明天學習簡便運算鋪墊。
最后,我覺得在指導學生在觀察比較65×5+45×5和(65+45)×5的聯系和區別時,可以指導學生從數和運算符號兩個角度觀察,學生得出結論后,其實已經感知到了算式的特點,然后讓學生用自己的方式創造相同類型的等式,可以是數、字母、圖形的等,值得欣慰的是學生能用各種方式正確表示出來,然后再揭示數學語言,學生的認知產生飛躍。
不足的是,學生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當旁觀者的角色,有待于教師科學地引導。
《乘法分配律》教學反思 28
教學乘法分配律之后,發現學生的正確率很低,特別是對乘法結合律與乘法分配律極容易混淆。針對這種情況,我認為在教學中應該注意這些問題:
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學中通過解決買水果濟青高速公路全長約多少千米?這一問題,結合具體的生活情景,得到了(110+90)2=1102+902這一結果。這時我們往往比較注意了等式兩邊的外形結構特點,即兩數的和乘一個數=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902
2、注意區分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的。和乘一個數或兩個積的和。在練習中(40+4)25與(404)25這種題學生特別容易出現錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15(84)和15(8+4);25125258和25125+258;練習中可以提問:每組算式有什么特征和區別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學生進行一題多解的練習,經歷解題策略多樣性的過程,優化算法,加深學生對乘法結合律與乘法分配律的理解。
如:計算12588;10189你能用幾種方法?
12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到用簡便算法進行計算成為學生的一種自主行為,并能根據題目的特點,靈活選擇適當的算法的目的。
4、多練,針對典型題目多次進行練習。
練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習,對優生提出掌握的要求。如3698+72;6825+68+6874,3212525等。